Meissner effect measurement of single indium particle using a customized on-chip nano-scale superconducting quantum interference device system
نویسندگان
چکیده
As many emergent phenomena of superconductivity appear on a smaller scale and at lower dimension, commercial magnetic property measurement systems (MPMSs) no longer provide the sensitivity necessary to study the Meissner effect of small superconductors. The nano-scale superconducting quantum interference device (nano-SQUID) is considered one of the most sensitive magnetic sensors for the magnetic characterization of mesoscopic or microscopic samples. Here, we develop a customized on-chip nano-SQUID measurement system based on a pulsed current biasing method. The noise performance of our system is approximately 4.6 × 10-17 emu/Hz1/2, representing an improvement of 9 orders of magnitude compared with that of a commercial MPMS (~10-8 emu/Hz1/2). Furthermore, we demonstrate the measurement of the Meissner effect of a single indium (In) particle (of 47 μm in diameter) using our on-chip nano-SQUID system. The system enables the observation of the prompt superconducting transition of the Meissner effect of a single In particle, thereby providing more accurate characterization of the critical field Hc and temperature Tc. In addition, the retrapping field Hre as a function of temperature T of single In particle shows disparate behavior from that of a large ensemble.
منابع مشابه
Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid su...
متن کاملMultimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes.
Magnetic iron oxide nanoparticles and near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWNT) form heterostructured complexes that can be utilized as multimodal bioimaging agents. Fe catalyst-grown SWNT were individually dispersed in aqueous solution via encapsulation by oligonucleotides with the sequence d(GT)15, and enriched using a 0.5 T magnetic array. The resulting nanotube c...
متن کاملNanowire acting as a superconducting quantum interference device.
We present the results from an experimental study of the magnetotransport of superconducting wires of amorphous indium-oxide having widths in the range 40-120 nm. We find that, below the superconducting transition temperature, the wires exhibit clear, reproducible, oscillations in their resistance as a function of magnetic field. The oscillations are reminiscent of those that underlie the opera...
متن کاملDirect measurement of current-phase relations in superconductor/topological insulator/superconductor junctions.
Proximity to a superconductor is predicted to induce exotic quantum phases in topological insulators. Here, scanning superconducting quantum interference device (SQUID) microscopy reveals that aluminum superconducting rings with topologically insulating Bi2Se3 junctions exhibit a conventional, nearly sinusoidal 2π-periodic current-phase relations. Pearl vortices occur in longer junctions, indic...
متن کاملspectro - temporal properties of quantum states of light
"Light is both a wave and a particle" is the consensus that the modern quantum optics community has come to in reconciling Newton's vision with that of Hyugens, while passing through Planck experiments and Einstein's theory of the photoelectric effect. Single photons are the most basic element of the modern quantum theory of light, and play a key role as information carriers in quantum networks...
متن کامل